Adaptive support vector regression for UAV flight control

نویسندگان

  • Jongho Shin
  • H. Jin Kim
  • Youdan Kim
چکیده

This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Utilization of High Fidelity Simulation in the Support of UAV Launch Phase Design: Three Case Studies

Improvement of the launch phase of a jet powered Unmanned Aerial Vehicle (UAV) with Jet Assisted Take Off (JATO), has been the subject of attention in the UAV industry. Use of flight simulation tools reduces the risk and required some amount of flight testing for complex aerospace systems. Full nonlinear equations of motion are used to study and simulate this maneuver and three case studies of ...

متن کامل

Fuzzy Adaptive Control of Unmanned Aerial Vehicle for Carrying Time-Varying Cargo on Predefined Path

At present, the use of unmanned aerial vehicles (UAVs) has been increased dramatically. The reasons for this development are cheapness, smallness, simplicity, and diversity of missions. The simplicity of guidance and control of multi-rotor drones is that they are equipped with an autopilot system. This system is responsible for flying control. UAVs do not have a high weight and often have three...

متن کامل

Prediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system

Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...

متن کامل

Recognizing Plant Tension in Plantations by use of UAVs Visible Light Detector. (Case Study: Nekazalemrood Forestry Plan)

The use of lightweight and cheap UAVs to detect the health of forests and identify the tension of planted can be useful to prevent the spread of pests and diseases. In the present research, a lightweight quadcopter drone with a 12-megapixel camera, visible light range was used. This UAV was emploied to detect leaf tension of pure Quercus Castanifolia plantation, pure Acer Velutinum and their mi...

متن کامل

Prediction of Fe-Co-Mn/MgO Catalytic Activity in Fischer-Tropsch Synthesis Using Nu-support Vector Regression

Support vector regression (SVR) is a learning method based on the support vector machine (SVM) that can be used for curve fitting and function estimation. In this paper, the ability of the nu-SVR to predict the catalytic activity of the Fischer-Tropsch (FT) reaction is evaluated and the result is compared with two other prediction techniques including: multilayer perceptron (MLP) and subtractiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2011